Menu


Técnicas para la reparación de tejidos
Se ha comprobado que las células madre de un determinado tejido pueden unirse a ese mismo tejido dañado y desarrollarse hacia células adultas sanas.


Por: Dr. Juzno Aznar | Fuente: catholic.net




Reparación de tejidos por inclusión en los mismos o en el torrente circulatorio del paciente, de células madre de ese mismo tejido procedentes de otro sujeto.

En diversas experiencias se ha comprobado que las células madre de un determinado tejido pueden unirse a ese mismo tejido dañado y desarrollarse hacia células adultas sanas, tanto cuando se inyectan directamente en el tejido, como cuando se introducen indirectamente a través del sistema circulatorio (Science 290; 1479, 2000). Por el momento, nadie conoce exactamente cuál es el mecanismo por el que las células madre introducidas a través del torrente circulatorio reconocen al tejido dañado y llegan hasta él; pero sin duda, esta capacidad puede aprovecharse para reconstruir tejidos lesionados, o incluso para transportar diversos medicamentos hasta ellos.

Recientemente se han realizado diversas experiencias en esta área experimental. En efecto, se ha comprobado que células madre nerviosas cultivadas se pueden trasplantar al sistema nervioso central en donde se diferencian hacia neuronas maduras (Nature 402; 390, 1999). Lo mismo ha se conseguido con células de músculo, que trasplantadas a un tejido muscular dañado, se transforman en células musculares adultas sanas fusionándose con las originales dañadas y regenerándolas (J Cell Biol 144; 1113, 1999). Es este un campo en continuo desarrollo, por lo que, en septiembre pasado, en el Congreso de la Sociedad Americana de Ciencias Neurológicas celebrado en Nueva Orleans, se presentaron diversas comunicaciones relacionadas con él. Así, Jeffrey Kocsis, de la Universidad de Yale, comprueba que en muchas ocasiones las lesiones de la médula espinal no cortan completamente a las fibras nerviosas que discurren a lo largo de toda ella, por lo que, en teoría, podrían repararse. Para comprobarlo producen lesiones en la médula espinal de monos, deprivándolos de la mielina que recubre sus fibras nerviosas (la mielina es una sustancia que rodea a las fibras nerviosas necesaria para la transmisión de los impulsos nerviosos). Tras inyectar células madre nerviosas cerca de la lesión, comprueban que las células dañadas se recubren de nuevo de mielina, recuperando en parte su función.

También Jeffrey Rothstein de la Universidad Johns Hopkins de Baltimore, demuestra y presenta en el mismo Congreso, que las células madre pueden migrar a lo largo de la médula espinal. Para comprobarlo los investigadores dañan la médula de ratas con virus que producen lesiones parecidas a la esclerosis amiotrófica lateral de los humanos, lo que ocasiona en los animales una parálisis progresiva de sus miembros. Tras inyectar células madre en el líquido espinal, éstas migran hasta la región lesionada. Después de 8 semanas del trasplante, la mitad de los ratones podían mover algo sus extremidades. También las células madre pueden viajar hacia regiones cerebrales puntualmente dañadas. En este sentido, e igualmente en el mismo Congreso, Barbara Tate, del Hospital Infantil de Boston, presentó unas experiencias en las que se inyecta a ratas sustancia amiloide, un compuesto que se acumula en las placas de los enfermos de Alzeheimer, produciéndoles así una enfermad de Alzehemier experimental. En otro grupo de ratas control inyecta una proteína inocua. Después les inyectas a ambos grupos células madre en la parte opuesta de su cerebro, comprobándose que las células madre inyectadas se desplazan hasta la otra parte del cerebro, la lesionada, depositándose sobre la placa de Alzeheimer, cosa que no ocurre en las ratas que han recibido la proteína inocua.

Es decir, se comprueba que las células madre tienen la posibilidad de desplazarse hacia la zona dañada y de depositarse en ella. Esto hace que estas células madre hayan podido utilizarse también para transportar fármacos hasta diversos tejidos patológicos o lesionados, según se comprueba en unas recientes e interensantísimas investigaciones de Karen Aboody, del Hospital Infantil de Boston (Proc Natl Acad Sciencies USA 97; 12846, 2000) en las que inserta en células madre un gen capaz de reducir diversos tipos de tumores. Inyectando estas células madre portadoras del gen en distintos lugares del cerebro de ratas, demuestra que las células madre inyectadas emigran hacia el tumor, lo rodean y eliminan un gran número de sus células patológicas, disminuyendo así el tamaño del tumor.

Reparación de tejidos por inclusión en los mismos de células madre embrionarias, celulas madre adultas de otro tejido o de cordón umbilical.

En los dos últimos años se han realizado abundantes experiencias en este terreno, que vamos a tratar de sintetizar. A mediados de 1999 Brustle (Science 285; 754, 1999) consigue transformar en el laboratorio células madre embrionarias de ratones en oligodendrocitos y astrocitos (dos tipos de células nerviosas adultas). Después los trasplantan a ratas con una enfermedad desmielinizante y consiguen regenerar la mielina, por la acción de las células trasplantadas en varias áreas de su cerebro. En una experiencia parecida Mc Donald (Nature Med 5; 1410, 1999) trasplanta células madre embrionarias a animales con la médula espinal lesionada consiguiendo que se recuperen. También en experiencias realizadas en ratones (Science 284; 1168, 1999) se demuestra que células madre de médula ósea pueden transformarse en células hepáticas, que en principio podrían ser útiles para tratamiento de enfermedades hepáticas degenerativas. Esto mismo también lo comprueba Malcom Alison del Imperial College School de Londres (Nature Med 406; 257, 2000) que comprueba que células madre de médula ósea se pueden transformar en células hepáticas. Paul Sanberg presenta en febrero de 2000, en la Reunión Anual de la Asociación Americana para el Avance de las Ciencias experiencias que demuestran que es posible regenerar tejido nervioso deteriorado por un ictus cuando células de cordón umbilical son inyectadas a los animales lesionados por vía circulatoria. En noviembre del pasado año también se publica en Nature (Nature Med 6; 1282, 2000) que las células madre de médula ósea se pueden trasplantar a fetos de oveja y allí diferenciarse en una gran variedad de tejidos.

Más recientemente, en la LXXIII Reunión Anual de la Asociación Americana del Corazón celebrada en Nueva Orleans el pasado noviembre, el equipo de cirugía cardiaca de la Universidad McGill de Montreal, dirigido por Ray Chan, comunicó que si células madre de médula ósea de rata se inyectan directamente en el corazón de estos animales, se pueden convertir en células de músculo cardiaco, ésto lo comprobó en 20 de los 22 animales utilizados. En el mismo congreso un equipo del hospital Bichet de París, dirigido por Philiphe Menasche, presentó la primera experiencia clínica de trasplante autólogo (trasplante de células de un paciente a su propio organismo) de mioblastos (células musculares inmaduras) realizado en un paciente de 72 años con isquémia cardiaca por una coronariopatía. Los mioblastos se cultivaron en el laboratorio durante 2 semanas trasplantándolos a continuación al paciente. Al mes se comprobó que la situación clínica del mismo había mejorado objetivamente, seguramente por reposición a partir de los mioblastos trasplantados de las células cardiacas dañadas.

En el pasado diciembre se publican dos interesantísimos trabajos en Science, que demuestran que células madre de médula ósea implantadas en animales en experimentación se pueden trasformar en neuronas (células nerviosas adultas). En el primero de ellos (Science 290; 1775, 2000), el equipo de Helen Blau, inyecta células de médula ósea marcadas en ratones adultos y varios meses después comprueban que algunas de esas células marcadas pueden generar proteínas neuronales (proteínas generadas por células nerviosas) desarrolladas en el propio tejido nervioso central del animal trasplantado. La generación de estas células al cabo de 1 a 6 meses de realizado el trasplante de médula ósea demuestra la plasticidad de las células madre de los tejidos adultos. En el otro trabajo (Science 290; 1779, 2000) Eva Mezey y su equipo, demuestran que cuando se inyectan en las debidas condiciones experimentales células de médula ósea, éstas pueden migrar al cerebro y diferenciarse en células, que como en el trabajo anterior, también son capaces de generar proteínas específicamente neuronales. Este trabajo, como el anterior, abre la posibilidad de que células de médula ósea, fáciles de obtener, puedan constituir una fuente alternativa de neuronas en pacientes con enfermedades neurodegenerativas o con lesiones del sistema nervioso central. También en diciembre de este año pasado, en la 42 Reunión de la Sociedad Americana de Hematología, celebrada en San Francisco, un equipo de biología molecular del Instituto Nacional de la Salud de EEUU, informó que habían conseguido regenerar células cardiacas en el miocardio lesionado de ratones trasplantándoles células madre de médula ósea. Es decir, en todas las experiencias anteriores se demuestra la posibilidad de reprogramar células madre de tejidos adultos, que pueden ser inyectadas en distintos órganos, como corazón, músculos, hígado, pulmón o intestino, transformándose in situ en células de esos tejidos (Science 288; 1660, 2000).

El objetivo de esta breve revisión era especialmente valorar posibilidades alternativas para la regeneración de tejidos y órganos, distintas de la utilización de embriones para la obtención de células madre, dadas las dificultades éticas que presenta el uso de estas últimas. Como se ha puesto de manifiesto en estas líneas, las posibilidades son amplias y por tanto la esperanza de encontrar caminos éticos para la medicina reparadora asequibles en los próximos años.
 

 







Compartir en Google+




Reportar anuncio inapropiado |